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Abstract

Null Hypothesis Bayesian Testing (NHBT) as an alternative to Null Hy-

pothesis Significance Testing (NHST) has been gaining more attention

over the last decade. A desirable property of a testing procedure is its

compatibility with Optional Stopping: Collecting data, looking into it and

deciding if a decision for a hypothesis can be made or if more data needs

to be collected. NHBT seems to allow Optional Stopping and allows to

gather evidence not only for the alternative hypothesis, but also for the

null hypothesis. If a chosen prior in NHBT does not reflect the belief in

the data there is a null hypothesis bias — referred to as the Catch Up Ef-

fect. Also it has been shown that in some cases Optional Stopping can be

problematic if the prior does not reflect the beliefs in the data. This thesis

investigates in which cases the Catch Up Effect occurs and when Optional

Stopping is problematic or prone to hacking Bayes Factors. Firstly, the

properties of the Catch Up Effect in relation to Bayes Factors are investi-

gated. Secondly, the Optional Stopping procedure with Bayes Factors as

a function of sample size is simulated. Finally, examples relating to both

concepts are shown to showcase how the ”hacking” of these Bayes Factors

could be practically possible.
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Zusammenfassung

Bayesianisches Nullhypothesentesten (NHBT) hat als Alternative zum

Nullhypothesen-Signifikanztesten (NHST) über das letzte Jahrzent mehr

Aufmerksamkeit erlangt. Eine erwünschte Eigenschaft eines Testverfah-

rens ist seine Kompatibilität mit optionalen Stoppen: Daten sammeln,

untersuchen und entscheiden, ob eine Entscheidung für eine Hypothese

getroffen werden kann oder ob weitere Daten gesammelt werden müssen.

NHBT scheint optionales Stoppen zu ermöglichen und erlaubt, nicht nur

Evidenz für die Alternativ-, sondern auch für die Nullhypothese zu sam-

meln. Falls ein gewählter Prior in NHBT nicht die Überzeugungen in den

Daten reflektiert, existiert ein Bias für die Nullhypothese — Catch Up Ef-

fect genannt. Außerdem wurde gezeigt, dass in einigen Fällen optionales

Stoppen problematisch sein kann, falls der Prior nicht die Überzeugun-

gen in den Daten reflektiert. Diese Arbeit untersucht, in welchen Fällen

der Catch Up Effect auftritt und wann optionales Stoppen problematisch

oder anfällig für das Hacken von Bayes Faktoren ist. Zuerst werden die

Eigenschaften des Catch Up Effect in Relation zu den Bayes Faktoren un-

tersucht. Dann wird optionales Stoppen mit Bayes Faktoren als Funktion

in Abhängigkeit zur Stichprobengröße simuliert. Zuletzt werden Beispiele

in Relation zu den beiden Konzepten gezeigt, um zu demonstrieren wie

Bayes Faktoren in der Praxis ”gehackt” werden könnten.
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1 Introduction

Null Hypothesis Bayesian Testing (NHBT) with an Bayesian t-test as an al-

ternative to Null Hypothesis Testing (NHST) with the classical t-test gained

more attention over the last decade (Tendeiro & Kiers, 2019, p.774). A desir-

able property of a testing procedure is its compatibility with Optional Stopping:

Collecting data, looking into it and deciding if a decision for a hypothesis can

be made or if more data needs to be collected (Rouder, 2014, p.301).

For NHBT two main advantages seem to be allowed: Optional Stopping seems

to be possible and evidence can not only be gathered for the alternative, but

also for the null hypothesis.

This is not possible with NHST, because although it is guaranteed to correctly

decide for the alternative hypothesis H1 for increasing sample size n, if H1 is

indeed true, this is not the case if H0 is true. If H0 is true, with increasing

sample size n there will be a point, where an incorrect decision for H1 will be

made (see Rouder et al. (2009), p.226). This is a case of p-hacking and will be

demonstrated later (see Section 2.2).

Rouder et al. (2009) introduced the Bayesian t-test as a symmetrical test based

on Bayes Factors. Decisions with Bayes Factors are made with two decision

boundaries — one for the null hypothesis model and one for the alternative

hypothesis model. For the Bayesian t-test they quantify the evidence of these

hypothesis models in form of two different priors — with a point prior for the

null hypothesis. Based on these and the observed data the Bayes Factors of the

comparing models are computed.

Erven et al. (2007) introduced the term ”catch-up phenomenon”, which is re-

ferred to as the Catch Up Effect. The Catch Up Effect is a non-monotonic

behaviour of Bayes Factors in a null and alternative prior Bayes Factor and

exists in Bayesian Inference. This bias leans towards the null hypothesis and

was shown by Tendeiro and Kiers (2019) to be existent in the Bayesian t-test.

Rouder (2014) claims that for Bayesian Statistics Optional Stopping is indeed

possible, since the prior calibration incorporates the posterior odds. Further-

more, Bayes Factors as a measurement of likelihood of model comparison and

hypothesis testing in the Optional Stopping procedure are still valid. Even

for misspecified models, ”resulting updated beliefs may be interpreted as [...]

relative plausibility” (Rouder, 2014, p.306).

The ”choice of within-model priors is a delicate matter for Bayes Factors” (Ten-

deiro & Kiers, 2019, p.780). Bayes Factors are comparison factors between two
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specified models (in the Bayesian t-test used for null and alternative models)

that consist of chosen specified within-model priors. Therefore it is important

for Bayesians to choose this prior in form of a density function based on a jus-

tified belief. Tendeiro and Kiers (2019) show that this is not an easy matter for

an ”objective/default prior”. These priors were primarily chosen as ”objective”

and ”default”, because they have useful theoretical properties. However, they

”lack[...] empirical justification for any specific application” (Tendeiro & Kiers,

2019, p.781).

It was also shown by de Heide and Grünwald (2021) that default priors are prone

to violations of calibration ”somewhat for fixed sample sizes, but much more

strongly under optional stopping” (de Heide & Grünwald, 2021). They provide

a distinction between different types of priors and propose a critical view of the

use of default priors and optional stopping.

The aim of this thesis is to explore the Catch Up Effect and the Optional Stop-

ping procedure to gain insights in the ”hackability” of Bayes Factors with re-

spect to default priors. An analysis of the properties of the Catch Up Effect will

show, that different parameter changes in the calculation of Bayes Factors will

influence the Bayes Factor accordingly. A simulations of the Optional Stopping

procedure will show a high bias towards the null hypothesis — especially for

small effects. Application examples additionally show how to combine the prop-

erties of the Catch Up Effect and Optional Stopping for a better understanding

on how Bayes Factors can be hacked practically.

In this thesis it will be shown that Bayes Factors are prone to the Optional

Stopping procedure for default priors and that the misspecification of priors or

general model assumptions lead to a high bias in decision making. It will also be

shown that Optional Stopping is problematic for unjustified default priors and

that the properties of the Catch Up Effect can be used to hack Bayes Factors,

such that an incorrect decision is made even though an effect exists — and even

for settings that are thus far known as reliable.

Two Optional Stopping procedures for NHBT will be defined in this thesis: one

for the asymmetrical case and one for the symmetrical case. The asymmetrical

case is analogous to the NHST example of p-hacking and has only one decision

boundary towards the null hypothesis. Where it is easy to see, that the Asym-

metrical Optional Stopping Procedure is problematic to use for gaining insights

in collected data, it is questionable if this is also the case for the Symmetrical

Optional Stopping Procedure. A focus of the thesis is therefore laid on the

Symmetrical Optional Stopping.
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Section 2 explains the methods of the thesis and consists of four subsections:

important concepts of Bayesian statistics and Bayes Factors are defined in 2.1.

Optional Stopping and it shortcomings for NHST are explained in 2.2. The two

different Bayesian prior settings are defined for the calculation of Bayes Factors

in 2.3 and details on the Optional Stopping simulation can be found in 2.4. The

results of the thesis are reported in Section 3. The results of the Catch Up Anal-

ysis of important properties and parameter relations are explained in 3.1. The

Optional Stopping simulation results are reported in 3.2 with the asymmetrical

and symmetrical procedure for the idealised setting (point vs. normal prior)

and the symmetrical procedure for a realistic setting (point vs. Cauchy prior).

Furthermore an approximation for the idealised setting is also calculated. Fi-

nally both approaches — Optional Stopping simulations and Catch Up Effect

— will be combined together to show parameter manipulations on a practical

example in 3.3.
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2 Methods

The methods of this thesis are separated into four parts: The fundamental

concepts of Bayes Factor and NHBT are introduced in Section 2.1.Optional

Stopping and the underlying mechanism is explained in Section 2.2 . The as-

sumptions for the mathematical settings are laid out with the respective priors

in Section 2.3 . And at last the computational simulations for the respective

settings are explained in Section 2.4.

2.1 Bayes Factor

The Bayes Theorem — given the probabilities P (A) and P (B) for events A and

B as well as the conditional probability P (B | A) — infers the probability of

P (A | B).

P (A | B) =
P (B | A) · P (A)

P (B)
(1)

For Bayesians these probabilities are to be interpreted as beliefs about the events

before and after evidence about the events is accounted for. The probability

before evidence taken in account is the prior probability — the initial belief

about the event P (A). The probability after evidence taken into account is the

posterior belief P (A | B) given B is true. Given our initial belief about A the

support that B provides for A is isolated by P (B|A)
P (B) . Therefore for Bayesians

the posterior belief updates the initial belief and can be used for future priors.

Researchers use the Bayes Theorem as an application for Bayesian Inference.

Bayesian Inference is the way of using experimental evidence and (multiple)

hypotheses to infer support for or against a hypothesis.

A is often interpreted as data D and B as a model or a hypothesisM. P (M)

quantifies the prior probability of the model. The probability of the data given

the model P (D | M)— normalized by the probability of the data P (D) — is

the weight of the data given the model. Therefore, given a model or hypothesis

M and our gathered data D one can infer the probability of the model given

the data P (M | D) with the Bayes Theorem:

P (M | D) =
P (D | M) · P (M)

P (D)
(2)

In experiments it is often useful to compare two hypotheses (e.g., null hypothesis

and alternative hypothesis). Therefore it is suited to look at the comparison
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of two models M0 andM1 to compare hypotheses in these specified models.

To calculate the likelihood of a certain model P (Mi | D) the Bayes Formula is

directly applied to P (Mi | D) for i = 0, 1:

P (Mi | D) =
P (Mi) · P (D | Mi)

P (M0) · P (D | M0) + P (M1) · P (D | M1)
(3)

Most of the time researchers are interested in the weight the data provides

towards a certain model by looking into the change of the prior odds to the

posterior odds by the observed data. The prior odds reflect our beliefs how

likely the models are in comparison and are denoted by P (M1)
P (M0)

. The posterior

odds also reflect our beliefs in the comparison of the likelihood, but after the

consideration of the given data D. They are denoted by P (M1|D)
P (M0|D) .

Now for the two given modelsM0,M1 how much is the weight comparing these

models in regards to the observed data for each model? This weight is called the

Bayes Factor (BF) and is denoted by P (D|M1)
P (D|M0)

. In experiments Bayes Factors

are commonly used as a form of hypothesis test to conclude evidence for or

against a certain hypothesis.

P (M1 | D)

P (M0 | D)︸ ︷︷ ︸
posterior odds

=
P (M1)

P (M0)︸ ︷︷ ︸
prior odds

× P (D | M1)

P (D | M0)︸ ︷︷ ︸
Bayes Factor BF10

(4)

The Bayes Factor decision threshold BFcrit is chosen symmetrical for both hy-

pothesis models. If the calculated Bayes Factor BF10 is higher than BFcrit

one decides for model M1. If BF10 is lower than 1/BFcrit, one decides for

model M0. Rouder et al. (2009) provide typical critical Bayes Factor decision

thresholds: BFcrit = 3 and BFcrit = 10. The decision on the meaning of these

odds-ratio is left to the researcher themselves (see Rouder et al. (2009), p. 231).

A deeper look into the Bayes Factor reveals, that Bayes Factors are sensitive to

the choice of the priors set for each model (within model prior).

Beliefs about hypothesis are specified as a model by choosing a suitable priors.

The advantage of priors is, that every belief about a hypothesis can be modeled

with a prior - specified as a density function.

P (D | Mi) =

∫
Θi

P (D | θi,Mi)︸ ︷︷ ︸
observed data

· P (θi | Mi)︸ ︷︷ ︸
within model prior

dθi (5)

For a more detailed introduction to Bayesian statistics see for example Kruschke

(2014).
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2.2 Optional Stopping

In a common experimental setup researchers have a fixed sample size n and

investigate the collected data in this sample.

In Optional Stopping the sample size n is not fixed. Instead, for each collected

data point researchers first look at the data and decide, if there is enough ev-

idence to make a decision towards a given hypothesis. If there is not enough

evidence yet to make a decision, one continues to sample and repeats this pro-

cedure. If there is enough evidence, then the decision for a given hypothesis is

made, e.g. to reject the null hypothesis and for the alternative hypothesis.

This practice is not possible for Frequentists, because the Null Hypothesis Sig-

nificance Test (NHST) is asymmetrical and would lead at some point to a sta-

tistically significant p-value.

One can show this with a simple simulation: Suppose data Yj , j ∈ {1...n} is

normally distributed with Yj ∼ N (µ = 0, σ2 = 1). For the null hypothesis H0

it is assumed that µ = 0, for the alternative hypothesis H1 it is assumed that

µ ̸= 0. A two-sided t-test is conducted with the significance level α = 0.05. If

p ≥ 0.05 at sample size n, no decision is made and the sample size is increased

by one.

One would suppose, if Optional Stopping would work for NHST — then even for

an asymmetric test — there would be simply no decision to be made or in 5%

of all Optional Stopping cases a wrong decision (Error Type I) would be made.

However as one can see in Figure 1 at some sample size n there is a sample size

where p < 0.05 and therefore decides for H1 — even though the true effect is at

µ = 0 and one should have decided for H0.
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Figure 1: Random Walk for frequentistic asymmetrical significance testing with
Optional Stopping from a normal distribution N (µ = 0, σ2 = 1).

The inherent problem in the Frequentist Optional Stopping procedure is one of

asymmetrical testing, which allows to get as many tries as one needs to incor-

rectly decide for the alternative hypothesis. This problem can be mapped to

Bayesian Optional Stopping with only one decision threshold for H0. Although,

there are decisions for H0 being made here, this is the same kind of problem.

If one takes a look at the Asymmetrical Optional Stopping Procedure (Algo-

rithm 1), one can see that — unless a sufficient sample size is taken as a maxi-

mum to stop the Optional Stopping Procedure, one can only decide for H0 but

never for H1 as stopping without making a decision means, there is just not

enough evidence towards H0. However an indecisive decision can be made —
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H1 or indecisive — when the sample size maximum is reached without making a

decision for H0.

data = collect new data point
sampleSize = length(data)
while BF < BFcrit AND sampleSize < sampleSizemax do

data = data ++ collect new data point
BF = calculate new BF based on data
sampleSize = sampleSize + 1

end
if BF > BFcrit then

Decide for H0

end
else

Decide for H1 or indecisive

end
Algorithm 1: Asymmetrical Optional Stopping Procedure

The commonly used Optional Stopping procedure is the Symmetrical Optional

Stopping Procedure (Algorithm 2). The decision thresholds are mirrored - if

BFcrit is the chosen Bayes Factor decision threshold for H0, then
1

BFcrit
is the

decision threshold for H1. An example for a random walk can be seen in Figure

2.

data = collect new data point

while BF < BFcrit and BF > 1
BFcrit

do

data = data ++ collect new data point
BF = calculate new BF based on data

end
if BF > BFcrit then

Decide for H0

end

if BF < 1
BFcrit

then

Decide for H1

end
Algorithm 2: Symmetrical Optional Stopping Procedure
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Figure 2: RandomWalk for the Symmetrical Optional Stopping Procedure. The
Bayes Factors are calculated based on sampling from a normal distribution with
N (µ = 0, σ2 = 1). Bayes Factors were computed taking the idealised setting as
basis (see section 2.3.1).

2.3 Assumptions

In following the idealised and the realistic setting are introduced. The main

focus is laid on the idealised setting and analysis for the Catch Up Effect and the

Optional Stopping simulation. The realistic setting serves as an extension to the

idealised setting and to the observations of the Optional Stopping simulation.
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2.3.1 Idealised Setting

Based on the paper of Tendeiro and Kiers (Tendeiro & Kiers, 2019) a specified

point prior for the H0 and a normal prior for the alternative hypothesis H1 is

introduced.

Suppose data is normally distributed with Yj ∼ N (µ, σ2) for j = 1, ..., n with

known variance σ2. The two hypotheses are modeled with:

M0 : µ = 0 (null hypothesis H0)

M1 : µ ∼ N (0, σ2
1) (alternative hypothesis H1)

A visualisation of both models can be seen in Figure 3. Also see Tendeiro and

Kiers (2019) for more details on the specification of these models.

Definition 1 (BF10 Formula).

Tendeiro and Kiers (2019) used this setting to calculate the Bayes Factor for-

mula BF10 assuming known variance σ2:

BF10 =
σ√

σ2 + nσ2
1

· exp
[

n2ȳ2σ2
1

2σ2(σ2 + nσ2
1)

]
(6)

Directly from this, BF01 can be derived:

BF01 =

√
σ2 + nσ2

1

σ · exp
[

n2ȳ2σ2
1

2σ2(σ2+nσ2
1)

] (7)

The non-monotonic behaviour of the BF10 formula with a minimum as bias

towards the model M0 is referred here as Catch Up Effect. This was first

introduced by Erven et al. (2007) as ”catch-up phenomenon”. This Catch Up

Effect influences decision making for H0 under certain circumstances. BF10 will

be interpreted as a function depending on sample size n to further investigate its

properties with respect to Optional Stopping. Figure 4 shows the BF10 function

and the corresponding Catch Up Effect for different means.

BF10 is a continuous function and allows n ∈ R+ as inputs. However, data

points n are of discrete nature. Therefore in applications it can be useful as a

discrete function BF10 : N>0 → R+.
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Figure 3: Comparing the null hypothesis (point prior) with the alternative
hypothesis (normal prior). The density of the point prior is all at µ = 0 whereas
density of the alternative prior is normal distributed.
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Given a critical Bayes Factor threshold BFcrit one can change the perspective

to look at decision making by comparing the sample mean ȳ to a critical mean

threshold ȳcrit. This will be useful for the proposed approximation in Section

3.2.2.

Definition 2.

Tendeiro and Kiers (2019) derived the inverse Bayes Factor function ȳcrit =

BF−1
10 (n, σ, σ1, BFcrit) with BFcrit = 1 and σ2 = 1. Generalizing this formula

with respect to BFcrit yields:

ȳcrit = ±
√
2(1 + nσ2

1)

nσ1

(
ln

(
BFcrit

√
1 + nσ2

1

))1/2

Also see appendix A.1 for more details on the derivation.

Also Newtons Method (see Lemma 4) could be useful to iteratively compute

nstart/end given a decision threshold BFcrit = BF10(n). This is done to look at

intersection points in which it may be more likely for a certain specification of

a start sample size nstart or maximum sample size nend in Optional Stopping to

maximize probability for one of the hypotheses.

The aim of using this idealised setting is the focus on two investigations: Firstly,

to investigate the properties of the Bayes Factor function BF10 with respect to

the Catch Up Effect and to look into meaningful relations between Bayes Factors

and other parameters. Secondly, to investigate the decision making for either

hypotheses (H0 or H1) with both Optional Stopping procedures.

2.3.2 Realistic Setting

Normally the variance is not known. Therefore the idealised setting is ”ideal”,

such that the true variance — including introduced noise — is known. Note,

the main focus is on the idealised setting. The realistic setting is only used

as an extension to the Optional Stopping simulation. For the realistic setting

it is therefore necessary to assume an unknown variance. As an alternative

prior instead of a ”naive” normal distribution the default prior in form of a

Cauchy distribution is commonly used as a weakly informative prior. Therefore,

suppose data is still normally distributed with Yj ∼ N (µ, σ) with an unknown

variance σ2. The Cauchy prior is modeled with the known scale r. Then the

17



two hypotheses are modeled with:

M0 : µ = 0 (null hypothesis H0)

M1 : µ ∼ Cauchy(0, r) (alternative hypothesis H1)

In Figure 5 is a visualisation for the two models compared. Also see Rouder

et al. (2009) for more details on the specification of these models.
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Figure 5: Comparing the null hypothesis (point prior) with the alternative
hypothesis (cauchy prior). The cauchy prior has ”heavier” tails and allows
more extreme outliers than the normal prior.
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2.4 Computational Simulation

Simulations are done with R (R Core Team, 2024) and self-implemented func-

tions for the idealised setting considering the algorithms for the asymmetrical

(Algorithm 1) and the symmetrical Optional Stopping Procedure (Algorithm 2).

The code corresponding to this thesis is openly available at https://osf.io/a3tcg.

2.4.1 Idealised Simulation

For the Optional Stopping simulation the Idealised Setting is used.

As data is distributed normally, data points are drawn randomly from a normal

distribution with the implemented rnorm function. Assuming a known true

variance of σ2 = 1, an alternative prior variance σ2
1 = 1 and µ = [0, 1] with step

sizes of δ = 0.01 in between, there are 101 combinations — each one repeated

20000 times. The critical Bayes Factor threshold for H1 is BFcrit = 3. Data

gathering is started with one data point and is steadily incremented by one data

point. After each data point gathered, the current Bayes Factor is calculated

and compared to the critical threshold(s). BF10 with the Bayes Factor decision

threshold for H0 : 1
BFcrit

= 1
3 and H1 : BFcrit = 3

The asymmetrical Optional Stopping simulation decides via this procedure with

BFcrit = 1
3 for H0 and after a stopping count of n = 250 a decision for

H1 or indecisive is made.

2.4.2 Realistic Simulation

The realistic simulation is based on the Realistic Setting. The simulation was

exactly performed as in Idealised Simulation, but it is now asssumed that the

mean in the alternative prior is Cauchy-distributed and therefore a Cauchy prior

is chosen: 20000 repetitions and µ = [0, 1] with step sizes δ = 0.01 in between.

Additionally three different scales r = { 0.5√
2
, 1√

2
, 2√

2
} and three different Bayes

Factor decision thresholds BFcrit = {3, 6, 10} are chosen. Therefore there are

in total 909 different combinations with each 20000 repetitions, for which the

Symmetrical Optional Stopping Procedure is applied. A simulation for the

Asymmetrical Optional Stopping Procedure is discarded as the results of Normal

Prior With Known Variance (Idealised Setting) show, that the symmetrical case

is more interesting. For the calculation of the Bayes Factors the R package

BayesFactor (Morey et al., 2015) is used.
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3 Results

Results are separated into three parts: Firstly, the Catch Up Effect properties

are analysed and parameter relations are derived in Section 3.1. Secondly, the

Optional Stopping simulations are reported in Section 3.2. Thirdly, an applica-

tion example shows how to maximize either the null hypothesis or the alternative

hypothesis given Optional Stopping and the parameter relations in Section 3.3.

3.1 Catch Up Effect Analysis

In the Catch Up Effect analysis, properties and relations will be claimed in

Propositions with visualisations and later be proven in Proofs.

3.1.1 Propositions

The properties of the Bayes Factor function BF10 and especially the Catch Up

Effect were analysed and are summarized in the following propositions.

Proposition 1 (Minimum of BF10).

For n ∈ (0,∞), σ > 0, σ1 > 0, ȳ ̸= 0 the function BF10(n, ȳ, σ, σ1) (see Defi-

nition 1) always has a minimum argument at argminn BF10(n, ȳ, σ, σ1) = n∗

with

n∗ = σ2

(
−2ȳ2 + σ2

1 +
√
4ȳ4 + σ4

1

2σ2
1 ȳ

2

)
(8)

and a minimum minn BF10(n, ȳ, σ, σ1) = BF10(n∗, ȳ, σ, σ1) with:

BF10(n∗) =
ȳ√

1
2

(
σ2
1 +

√
4ȳ4 + σ4

1

)

· exp

−ȳ2 + 1
2σ

2
1 +

√
ȳ4 + 1

4σ
4
1 +

2ȳ4−ȳ2
√

4ȳ4+σ4
1

σ2
1

σ2
1 +

√
4ȳ4 + σ4

1


(9)

As reported in Idealised Setting the Catch Up Effect with its minimum exists

as Proposition 1 shows. For a visualisation revisit Figure 4.

The argminn BF10(n, ȳ, σ, σ1) = n∗ is not only the best fit for the continuos

function BF10, but is also the best fit for for the discrete space, by defining

n∗,discrete = arg min
n∈{⌊n∗⌋,⌈n∗⌉}

BF10(n, ȳ, σ, σ1) (10)
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This is also the case for other n, that need to be transformed from the continuous

to the discrete space.

Corollary 1 (Influence of true standard deviation σ on the minimum

of BF10).

For the function BF10 the point of the minimum argminn BF10 scales quadrati-

cally with the true standard deviation σ. The value of the minimum minn BF10

is independent of the true standard deviation σ.

The influence of the standard deviation of the normally distributed data does

not change the value of the minimum for BF10 — instead it scales the location

of the minimum quadratically (see Figure 6). This can be directly inferred from

its role as the true standard deviation of the normal distributed data. If there

is more ”noise” in the data there is a higher sample size needed to reach the

same likelihood towards a decision.
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Figure 6: Comparing different variances across fixed parameters.

Corollary 2 (Influence of mean ȳ on BF10).

For n ∈ (0,∞), σ > 0, σ1 > 0 the function BF10 increases strictly monotonically

with respect to |ȳ| for all means ȳ ̸= 0.

The Bayes Factor function BF10 increases with the amount of the mean —

this is not surprising as it is a desirable property following from the central

limit theorem — for increasing sample size n to have an increasing probability

to decide for the alternative hypothesis H1 (if an effect exists). Also look at

Figure 7.

22



0 20 40 60 80 100

0
2

4
6

8
10

BF01 depending on n and y, σ2 = 1, σ1
2 = 1

n

B
F

01

y = 0.1
y = 0.2
y = 0.5
y = 0.8
y = 1

Figure 7: Comparing different means across different fixed parameters.

Proposition 2 (Influence of alternative prior width σ1 on BF10).

For n ∈ [1,∞), σ > 0, σ1 > 0 :

1. If σ1 > ȳ the function BF10 decreases strictly monotonically with respect

to alternative prior width σ1.

2. If σ1 <
√

ȳ2 − σ2 the function BF10 increases strictly monotonically with

respect to the alternative prior width σ1.

3. As the alternative prior width σ1 approaches its limits the following holds:

lim
σ1→0

BF10 = 1 and lim
σ1→∞

BF10 = 0.
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The influence of the alternative prior width σ1 on the Bayes Factor function

BF10 is not trivial. There are two cases that are of interest σ1 > ȳ and σ1 <√
ȳ2 − σ2. All other cases are not relevant, because they have a non-monotonic

influence or change monotonicity over the function.
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Figure 8: On the left side for ȳ = 0.5, σ1 = 2, then σ1 > ȳ : If σ1 increases
BF10 decreases towards a H0 decision. On the right side for ȳ = 2, σ1 = 0.01
with σ2 = 1 then σ1 <

√
ȳ2 − σ2 : If σ1 decreases, BF10 decreases towards an

equal likeliness of hypotheses H0 and H1. Note that the alternative prior is very
narrow and therefore barely visible.

Looking at the case where the alternative prior width is greater than the mean

σ1 > ȳ. If the alternative prior width σ1 increases then BF10 decreases towards

a H0 decision. Intuitively, when the normal distribution is more spread out,

the probability for the mean lying in the normal distribution of the alternative

prior decreases, because it is already ”inside” of the normal distribution. So

misspecifying the alternative prior width by increasing it leads in an extreme

case to an uniform distribution case, where the density is so spread out, that

the point prior is the extremely likely model to decide for.

Now looking at the case where σ1 <
√
ȳ2 − σ2. If the alternative prior width

decreases, then BF10 decreases as well. Intuitively, when the normal distribution

gets denser the probability of deciding for the H1 also decreases, because the

mean is already ”outside” of the normal distribution. This leads in extreme cases

to such a dense normal distribution that the normal prior is not distinguishable

from the point prior anymore. Therefore this leads to an equal likeliness of

hypotheses for H0 and H1. Also see Figure 8 for a visualisation.
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Figure 9: Comparing different alternative prior variances across fixed parame-
ters.

Therefore it is of more interest to look into the case σ1 > ȳ, because for the

decreasing Bayes Factor towards a H0 decision with respect to increasing σ1.

In Figure 9 there are different values of alternative prior width compared and

visualised.

Proposition 3 (Newtons Method finds for BFcrit all global solutions

in BF10).

Given a critical Bayes Factor threshold BFcrit for any ȳ, σ > 0, σ1 > 0 and

a tolerance ε this algorithm will always find all correct solutions beyond that

tolerance ε for BF10(ȳ, σ, σ1) = BFcrit of which there are at most two: n1 and

n2, if any solutions exist:
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Input: BFcrit, ȳ, σ > 0, σ1 > 0, ε > 0

Output: {n1, n2} or {n∗} or ∅
// No minimum exists

if (ȳ = 0) then
n∗ = ε

// Critical threshold greater than initial n

if BF10(n∗) < BFcrit then
return ∅

// Critical threshold smaller than or equal initial n

else

while BF10(n∗) > BFcrit and n∗ > 0 do
n∗ = newtonsMethod(n∗, BFcrit, ȳ, σ, σ1)

return {n∗}

// A minimum exists

else
n∗ = argMinBF10(ȳ, σ, σ1)

// Minimum value at initial n intersects with critical

threshold

if (BFcrit = BF10(n∗)) then
return {n∗}

// Minimum value is greater than critical threshold

else if BFcrit < BF10(n∗) then
return ∅

// Minimum value is smaller than critical value

else
n1 = n∗ − ε

n2 = n∗ + ε

// Calculate left boundary

while BF10(n1) < BFcrit and n1 > 0 do
n1 = newtonsMethod(n1, BFcrit, ȳ, σ, σ1)

// Calculate right boundary

while BF10(n2) < BFcrit do
n2 = newtonsMethod(n2, BFcrit, ȳ, σ, σ1)

return {n1, n2}

Algorithm 3: Intersection points n1/2 for BF10 = BFcrit

If one or multiple solutions are found, a transformation to the discrete space

can be conducted as follows: if |n1 − ⌊n1⌋| > |n1 − ⌈n1⌉|, then ⌈n1⌉ is chosen,

else ⌋n1⌊ is chosen. This is also the case for solution n2 if it exists. Results of
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the algorithm are visualised in Figure 10.
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Figure 10: On the left Intersection points for different Bayes Factor thresholds
BFcrit and on the right Intersection points for different true means ȳ.

3.1.2 Proofs

Before proving the propositions a few lemmas will be introduced. They are not

proven here, but references to proofs are given below.

Lemma 1 (Product of two smooth functions is smooth).

For two smooth (infinitely differentiable) real functions f(x) and g(x) the prod-

uct f(x) · g(x) is smooth.

Lemma 2 (Logarithm preserves order.).

The real logarithmic function ln(x) is smooth (infinitely differentiable) and strict-

ly increasing for x > 0.

Lemma 3 (Partial derivative analysis for monotonic properties).

Given a real differentiable function f(τ, x1, ..., xn) , where τ is the parameter of

interest and x1, ..., xn are other parameters. If the partial derivative ∂f(τ,x1,...,xn)
∂τ

with respect to τ is either strictly positive or strictly negative for all values of

τ for any fixed parameters x1, ..., xn, then f(τ, x1, ..., xn) is strictly monotonic

with respect to τ .

Lemma 4 (Newton’s Method).

Given a real continuously differentiable function f(x) and suppose there exists

a root x∗, such that f(x∗) = 0 and f ′(x∗) ̸= 0. Given an initial guess x0
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sufficiently close to x∗ and a tolerance ε > 0, such that ε < |x∗ − x0| and
applying Newtons Method with the iteration:

xn+1 = xn −
f(xn)

f ′(xn)

If f ′(xn+1) ̸= 0 and ε was chosen small enough then |x∗ − xn+1| < |x∗ − xn|.
Therefore xn+1 is a closer approximation to x∗ than xn. Repeating this method

iteratively leads to a local convergence in x∗ if ε > |x∗ − xn+1| and x∗ is a root

of f(x) = 0.

For more information on Lemma 1, 2 and 3 look into an introduction book

about mathematical analysis (e.g. ”Principles of Mathematical Analysis” by

Rudin W. or ”Introduction to real analysis” by Bartle and Sherbert). For more

information on Lemma 4 a look into a numerical analysis introduction book

(e.g. ”Numerical Analysis” by Burden and Faires) is advised.

Proposition 1 For n ∈ (0,∞), σ > 0, σ1 > 0, ȳ ̸= 0 the function BF10(n, ȳ, σ,

σ1) (see Definition 1) always has a minimum argument at argminn BF10(n, ȳ, σ,

σ1) = n∗ with

n∗ = σ2

(
−2ȳ2 + σ2

1 +
√

4ȳ4 + σ4
1

2σ2
1 ȳ

2

)
and a minimum minn BF10(n, ȳ, σ, σ1) = BF10(n∗, ȳ, σ, σ1) with:

BF10(n∗) =
ȳ√

1
2

(
σ2
1 +

√
4ȳ4 + σ4

1

)

· exp

−ȳ2 + 1
2σ

2
1 +

√
ȳ4 + 1

4σ
4
1 +

2ȳ4−ȳ2
√

4ȳ4+σ4
1

σ2
1

σ2
1 +

√
4ȳ4 + σ4

1


.

Proof. To prove this the following steps are conducted:

1. Calculate first derivation ∂BF10

∂n .

2. Solve ∂BF10

∂n = 0 for n.

3. Show there exists exactly one location of the assumed minimum

argminn BF10 = n∗.
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4. Calculate the second derivation via the logarithmic function ln(BF10) and

show the extremum is indeed a minimum with ∂2 ln(BF10)
∂2n > 0

5. Calculate with the location n∗ the minimum value minBF10 = BF10(n∗).

Assume n ∈ (0,∞) , ȳ ̸= 0, σ > 0, σ1 > 0. Because of Lemma 1 as long as

the denominator is not equal to 0 the function BF10 is smooth, because the

exponential function and the rational are under those conditions smooth as

well.

1. Calculate the first derivation ∂BF10

∂n .

BF10 =
σ√

σ2 + nσ2
1︸ ︷︷ ︸

f

· exp
[

n2σ2
1 ȳ

2

2σ2(σ2 + nσ2
1)

]
︸ ︷︷ ︸

g

∂BF10

∂n
=

∂f

∂n
· g + f · ∂g

∂n

f =
σ√

σ2 + nσ2
1

∂f

∂n
= −1

2
σσ2

1 · (σ2 + nσ2
1)

− 3
2

= − σσ2
1

2
√
(σ2 + nσ2

1)
3

g = exp

[
n2σ2

1 ȳ
2

2σ2(σ2 + nσ2
1)

]
︸ ︷︷ ︸

h

h =
n2σ2

1 ȳ
2

2σ2(σ2 + nσ2
1)

∂h

∂n
=

2nσ2
1 ȳ

2 · 2σ2(σ2 + nσ2
1)− (n2σ2

1 ȳ
2 · 2σ2σ2

1)

(2σ2(σ2 + nσ2
1))

2

=
4nσ4σ2

1 ȳ
2 + 4n2σ2σ4

1 ȳ
2 − 2n2σ2σ4

1 ȳ
2

4σ4(σ2 + nσ2
1)

2

=
2nσ4σ2

1 ȳ
2 + 2n2σ2σ4

1 ȳ
2 − n2σ2σ4

1 ȳ
2

2σ4(σ2 + nσ2
1)

2

=
2nσ4σ2

1 ȳ
2 + n2σ2σ4

1 ȳ
2

2σ4(σ2 + nσ2
1)

2
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=
2nσ2σ2

1 ȳ
2 + n2σ4

1 ȳ
2

2σ2(σ2 + nσ2
1)

2

=
nσ2

1 ȳ
2(2σ2 + nσ2

1)

2σ2(σ2 + nσ2
1)

2

∂g

∂n
=

∂ exp(h)

∂n
=

∂h

∂n
exp(h)

=
nσ2

1 ȳ
2(2σ2 + nσ2

1)

2σ2(σ2 + nσ2
1)

2
· exp

[
n2σ2

1 ȳ
2

2σ2(σ2 + nσ2
1)

]

∂BF10

∂n
= − σσ2

1

2
√
(σ2 + nσ2

1)
3
· exp

[
n2σ2

1 ȳ
2

2σ2(σ2 + nσ2
1)

]
+

σ√
σ2 + nσ2

1

· nσ
2
1 ȳ

2(2σ2 + nσ2
1)

2σ2(σ2 + nσ2
1)

2
· exp

[
n2σ2

1 ȳ
2

2σ2(σ2 + nσ2
1)

]
=

(
− σσ2

1

2(σ2 + nσ2
1)

3/2
+

nσ2
1 ȳ

2(2σ2 + nσ2
1)

2σ(σ2 + nσ2
1)

5/2

)
· exp

[
n2σ2

1 ȳ
2

2σ2(σ2 + nσ2
1)

]
=

(
− σ2σ2

1(σ
2 + nσ2

1)

2σ(σ2 + nσ2
1)

5/2
+

nσ2
1 ȳ

2(2σ2 + nσ2
1)

2σ(σ2 + nσ2
1)

5/2

)
· exp

[
n2σ2

1 ȳ
2

2σ2(σ2 + nσ2
1)

]
= σ2

1

(
−σ4 − nσ2σ2

1 + 2nσ2ȳ2 + n2σ2
1 ȳ

2

2σ(σ2 + nσ2
1)

5/2

)
· exp

[
n2σ2

1 ȳ
2

2σ2(σ2 + nσ2
1)

]

2. Solve ∂BF10

∂n = 0 for n.

∂BF10

∂n
= 0

= σ2
1

(
−σ4 − nσ2σ2

1 + 2nσ2ȳ2 + n2σ2
1 ȳ

2

2σ(σ2 + nσ2
1)

5/2

)
· exp

[
n2σ2

1 ȳ
2

2σ2(σ2 + nσ2
1)

]
= σ2

1

(
−σ4 − nσ2σ2

1 + 2nσ2ȳ2 + n2σ2
1 ȳ

2

2σ(σ2 + nσ2
1)

5/2

)
︸ ︷︷ ︸

Zero Product Property zpp

· exp
[

n2σ2
1 ȳ

2

2σ2(σ2 + nσ2
1)

]
︸ ︷︷ ︸

never becomes 0
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zpp = 0

= −σ4 − nσ2σ2
1 + 2nσ2ȳ2 + n2σ2

1 ȳ
2

= n2σ2
1 ȳ

2 + n(2σ2ȳ2 − σ2σ2
1)− σ4

= n2 σ2
1 ȳ

2︸︷︷︸
a

+n (2σ2ȳ2 − σ2σ2
1)︸ ︷︷ ︸

b

−σ4︸︷︷︸
c

= an2 + bn+ c︸ ︷︷ ︸
Quadratic formula

n1/2 =
−(2σ2ȳ2 − σ2σ2

1)±
√

(2σ2ȳ2 − σ2σ2
1)

2 − 4(σ2
1 ȳ

2)(−σ4)

2σ2
1 ȳ

2

=
−2σ2ȳ2 + σ2σ2

1 ±
√

4σ4ȳ4 − 4σ4σ4
1 ȳ

2 + σ4σ4
1 + 4σ4σ2

1 ȳ
2

2σ2
1 ȳ

2

= σ2

(
−2ȳ2 + σ2

1 ±
√
4ȳ4 + σ4

1

2σ2
1 ȳ

2

)

3. Show there exists exactly one location of the assumed minimum

argminn BF10 = n∗.

n1 ∈ (0,∞) :

n1 =
σ2
1 − 2ȳ2 +

√
4ȳ4 + σ4

1

2ȳ2σ2
1

For σ1 ̸= 0 and ȳ ̸= 0 :

σ2
1 > 0

σ2
1 > 2ȳ2 − 2ȳ2

Because − 2ȳ2 = −
√

4ȳ4 > −
√
4ȳ4 + σ4

1

σ2
1 > 2ȳ2 −

√
4ȳ4 + σ4

1

σ2
1

2ȳ2σ2
1

>
2ȳ2 −

√
4ȳ4 + σ4

1

2ȳ2σ2
1

σ2
1 − 2ȳ2 +

√
4ȳ4 + σ4

1

2ȳ2σ2
1

> 0

σ2 ·

(
σ2
1 − 2ȳ2 +

√
4ȳ4 + σ4

1

2ȳ2σ2
1

)
> 0

n1 > 0
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n2 ∈ (−∞, 0) :

n2 =
σ2
1 − 2ȳ2 −

√
4ȳ4 + σ4

1

2ȳ2σ2
1

For σ1 ̸= 0 and ȳ ̸= 0 :

−2ȳ2 < 0

0 < 2ȳ2

σ2
1 < 2ȳ2 + σ2

1

Because σ2
1 =

√
σ4
1 <

√
4ȳ4 + σ2

1

σ2
1

2ȳ2σ2
1

<
2ȳ2 +

√
4ȳ4 + σ4

1

2ȳ2σ2
1

σ2
1 − 2ȳ2 −

√
4ȳ4 + σ4

1

2ȳ2σ2
1

< 0

σ2 ·

(
σ2
1 − 2ȳ2 −

√
4ȳ4 + σ4

1

2ȳ2σ2
1

)
< 0

n2 < 0

Therefore the only extrema is at n∗ = n1 = (0,∞).

4. Calculate the second derivation via the logarithmic function ln(BF10) and

show the extremum is indeed a minimum with ∂2 ln(BF10)
∂2n > 0

ln(BF10) = ln

(
σ√

σ2 + nσ2
1

· exp
[

n2ȳ2σ2
1

2σ2(σ2 + nσ2
1)

])

= ln

(
σ√

σ2 + nσ2
1

)
+ ln

(
exp

[
n2ȳ2σ2

1

2σ2(σ2 + nσ2
1)

])
= lnσ − ln

(√
σ2 + nσ2

1

)
+

n2ȳ2σ2
1

2σ2(σ2 + nσ2
1)

=
n2σ2

1 ȳ
2

2σ2(σ2 + nσ2
1)
− ln

(√
σ2 + nσ2

1

)
+ lnσ

=
n2σ2

1 ȳ
2

2σ2(σ2 + nσ2
1)
− 1

2
ln
(
σ2 + nσ2

1

)
+ lnσ
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It is important to note that after Lemma 2, the properties of the loga-

rithmic function preserve the order, if all the inputs are defined for it.

Therefore determining a minimum with the second derivative of the loga-

rithmic function ∂2 ln(BF10)
∂2n > 0 still holds for the original term ∂2BF10

∂2n > 0.

Thus, this is the resulting function definition:

ln (BF10) : R+ → R : n 7→ n2σ2
1 ȳ

2

2σ2(σ2 + nσ2
1)
− 1

2
ln
(
σ2 + nσ2

1

)
+ lnσ

Calculation of the first derivation ∂ lnBF10

∂n :

∂ ln(BF10)

∂n
=

2nσ2
1 ȳ

2

2σ2(σ2 + nσ2
1)
− 2σ2σ2

1

n2σ2
1 ȳ

2

(2σ2(σ2 + nσ2
1))

2
− σ2

1

2(σ2 + nσ2
1)

=
nσ2

1 ȳ
2

σ2(σ2 + nσ2
1)
− n2σ4

1 ȳ
2

2σ2(σ2 + nσ2
1)

2
− σ2

1

2(σ2 + nσ2
1)

∂2 ln(BF10)

∂2n
=

σ2
1 ȳ

2

σ2(σ2 + nσ2
1)
− nσ4

1 ȳ
2

σ2(σ2 + nσ2
1)

2
− nσ4

1 ȳ
2

σ2(σ2 + nσ2
1)

2

+
2n2σ6

1 ȳ
2

2σ2(σ2 + nσ2
1)

3
+

2σ4
1

(2σ2 + nσ2
1)

2

=
σ2
1 ȳ

2

σ2(σ2 + nσ2
1)
− 2nσ4

1 ȳ
2

σ2(σ2 + nσ2
1)

2
+

n2σ6
1 ȳ

2

σ2(σ2 + nσ2
1)

3

+
σ4
1

2(σ2 + nσ2
1)

2

=
2σ2

1 ȳ
2(σ2 + nσ2

1)− 4nσ4
1 ȳ

2 + σ2σ4
1

2σ2(σ2 + nσ2
1)

2
+

2n2σ6
1 ȳ

2

2σ2(σ2 + nσ2
1)

3

=
2σ2σ2

1 ȳ
2 + 2nσ4

1 ȳ
2 − 4nσ4

1 ȳ
2 + σ2σ4

1

2σ2(σ2 + nσ2
1)

2

+
2n2σ6

1 ȳ
2

2σ2(σ2 + nσ2
1)

3

=
2σ2σ2

1 ȳ
2 − 2nσ4

1 ȳ
2 + σ2σ4

1

2σ2(σ2 + nσ2
1)

2
+

2n2σ6
1 ȳ

2

2σ2(σ2 + nσ2
1)

3

= σ2
1 ·
(
2σ2ȳ2 − 2nσ2

1 ȳ
2 + σ2σ2

1

2σ2(σ2 + nσ2
1)

2
+

2n2σ4
1 ȳ

2

2σ2(σ2 + nσ2
1)

3

)
= σ2

1 ·
(
(2σ2ȳ2 − 2nσ2

1 ȳ
2 + σ2σ2

1)(σ
2 + nσ2

1) + 2n2σ4
1 ȳ

2

2σ2(σ2 + nσ2
1)

3

)
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= σ2
1 ·
(
2σ4ȳ2 − 2nσ2σ2

1 ȳ
2 + σ4σ2

1 + 2nσ2σ2
1 ȳ

2

2σ2(σ2 + nσ2
1)

3

− −2n
2σ4

1 ȳ
2 + nσ2σ4

1 + 2n2σ4
1 ȳ

2

2σ2(σ2 + nσ2
1)

3

)
= σ2σ2

1 ·
(
2σ2ȳ2 + σ2σ2

1 + nσ4
1

2σ2(σ2 + nσ2
1)

3

)
= σ2

1 ·
(
2σ2ȳ2 + σ2σ2

1 + nσ4
1

2(σ2 + nσ2
1)

3

)

Therefore it is left to prove, that ∂2 ln(BF10)
∂2n > 0:

For σ > 0 and σ1 > 0 :

2σ2ȳ2︸ ︷︷ ︸
≥0

+ nσ4
1︸︷︷︸

>0

+σ2σ2
1︸ ︷︷ ︸

>0

> 0

σ2
1 · (2σ2ȳ2 + nσ4

1 + σ2σ2
1) > 0

σ2
1 ·
(
2σ2ȳ2 + nσ4

1 + σ2σ2
1

2(σ2 + nσ2
1)

3

)
> 0

∂2 ln(BF10)

∂2n
> 0

Therefore all extrema at n∗ are always minima.

5. Calculate with the location n∗ the minimum value minBF10 = BF10(n∗).

BF10(n∗) =
σ√

σ2 + σ2

(
−2ȳ2+σ2

1+
√

4ȳ4+σ4
1

2σ2
1 ȳ

2

)
σ2
1

· exp


(
σ2

(
−2ȳ2+σ2

1+
√

4ȳ4+σ4
1

2σ2
1 ȳ

2

))2

ȳ2σ2
1

2σ2

(
σ2 + σ2

(
−2ȳ2+σ2

1+
√

4ȳ4+σ4
1

2σ2
1 ȳ

2

)
σ2
1

)

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=
σ

σ

√
1 +

(
−2ȳ2+σ2

1+
√

4ȳ4+σ4
1

2σ2
1 ȳ

2

)
σ2
1

· exp


σ4

(
−2ȳ2+σ2

1+
√

4ȳ4+σ4
1

2σ2
1 ȳ

2

)2

ȳ2σ2
1

2σ4

(
1 +

(
−2ȳ2+σ2

1+
√

4ȳ4+σ4
1

2σ2
1 ȳ

2

)
σ2
1

)


=
1√

1 +

(
−2ȳ2+σ2

1+
√

4ȳ4+σ4
1

2σ2
1 ȳ

2

)
σ2
1

· exp


(

−2ȳ2+σ2
1+
√

4ȳ4+σ4
1

2σ2
1 ȳ

2

)2

ȳ2σ2
1

2

(
1 +

(
−2ȳ2+σ2

1+
√

4ȳ4+σ4
1

2σ2
1 ȳ

2

)
σ2
1

)


=
1√

1 +
−2ȳ2+σ2

1+
√

4ȳ4+σ4
1

2ȳ2

· exp


(

−2ȳ2+σ2
1+
√

4ȳ4+σ4
1

2σ2
1 ȳ

2

)2

ȳ2σ2
1

2 +
−2ȳ2+σ2

1+
√

4ȳ4+σ4
1

ȳ2



=
1√

1 +
−2ȳ2+σ2

1+
√

4ȳ4+σ4
1

2ȳ2

· exp


(

8ȳ4−4σ2
1 ȳ

2−4ȳ2
√

4ȳ4+σ4
1+2σ4

1+2σ2
1

√
4ȳ4+σ4

1

4σ4
1 ȳ

4

)
ȳ2σ2

1

2 +
−2ȳ2+σ2

1+
√

4ȳ4+σ4
1

ȳ2


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=
1√

1− 1 +
σ2
1+
√

4ȳ4+σ4
1

2ȳ2

· exp

 8ȳ4−4σ2
1 ȳ

2−4ȳ2
√

4ȳ4+σ4
1+2σ4

1+2σ2
1

√
4ȳ4+σ4

1

4σ2
1 ȳ

2

2− 2 +
σ2
1+
√

4ȳ4+σ4
1

ȳ2



=
1√

σ2
1+
√

4ȳ4+σ4
1

2ȳ2

· exp

 8ȳ4−4σ2
1 ȳ

2−4ȳ2
√

4ȳ4+σ4
1+2σ4

1+2σ2
1

√
4ȳ4+σ4

1

4σ2
1

σ2
1 +

√
4ȳ4 + σ4

1



=
1√

σ2
1+
√

4ȳ4+σ4
1

2ȳ2

· exp

−ȳ2 + 1
2σ

2
1 +

√
ȳ4 + 1

4σ
4
1 +

2ȳ4−ȳ2
√

4ȳ4+σ4
1

σ2
1

σ2
1 +

√
4ȳ4 + σ4

1



=
ȳ√

1
2

(
σ2
1 +

√
4ȳ4 + σ4

1

)

· exp

−ȳ2 + 1
2σ

2
1 +

√
ȳ4 + 1

4σ
4
1 +

2ȳ4−ȳ2
√

4ȳ4+σ4
1

σ2
1

σ2
1 +

√
4ȳ4 + σ4

1


Therefore, there exists only one minimum with

argmin
n

BF10 = σ2

(
σ2
1 − 2ȳ2 +

√
4ȳ4 + σ4

1

2ȳ2σ2
1

)
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and

minBF10 =
ȳ√

1
2

(
σ2
1 +

√
4ȳ4 + σ4

1

)

· exp

−ȳ2 + 1
2σ

2
1 +

√
ȳ4 + 1

4σ
4
1 +

2ȳ4−ȳ2
√

4ȳ4+σ4
1

σ2
1

σ2
1 +

√
4ȳ4 + σ4

1



Corollar 1 For the function BF10 the point of the minimum argminn BF10

scales quadratically with the true standard deviation σ. The value of the mini-

mum minn BF10 is independent of the true standard deviation σ.

Proof. The proof is divided in two parts:

1. Prove proportionality of σ2 on n∗, such that n∗,σ = σ2 · n∗,σ=1 :

n∗,σ = σ2

(
σ2
1 − 2ȳ2 +

√
4ȳ4 + σ4

1

2ȳ2σ2
1

)

= σ2 · 1 ·

(
σ2
1 − 2ȳ2 +

√
4ȳ4 + σ4

1

2ȳ2σ2
1

)
= σ2 · n∗,σ=1

2. Prove independency of σ on BF10(n∗) for s, t ∈ R+, such that

BF10,σ=s(n∗) = BF10,σ=t(n∗) : This follows directly from Proposition 1 .

Corollar 2 For n ∈ (0,∞), σ > 0, σ1 > 0 the function BF10 increases strictly

monotonically with respect to |ȳ| for all means ȳ ̸= 0.

Proof. Let n ∈ (0,∞), σ > 0, σ1 > 0. With Lemma 3 strictly increasing mono-

tonicity for all positive ȳ is proven by taking the partial derivative ∂BF10

∂ȳ and

checking if it is strictly positive for all ȳ for any other fixed parameter. The

logarithmic function property of Lemma 2 for preserving the order and the

composition of the logarithmic function ln with the Bayes Factor function BF10
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from Proposition 1 will be used.

Therefore the conditions for ∂ ln(BF10)
∂ȳ > 0 or ∂ ln(BF10)

∂ȳ < 0 will be proven:

ln(BF10) =
n2σ2

1 ȳ
2

2σ2(σ2 + nσ2
1)
− 1

2
ln (σ2 + nσ2

1) + lnσ

∂ ln(BF10)

∂ȳ
= ȳ · 2n2σ2

1

2σ2(σ2 + nσ2
1)

Without loss of generality:

ȳ > 0

ȳ · 2n2σ2
1

2σ2(σ2 + nσ2
1

> 0

∂ ln(BF10)

∂ȳ
> 0

For all ȳ > 0 the function BF10 is strictly monotonically increasing in respect

to ȳ. Analogously for all ȳ < 0 the function BF10 is strictly monotonically

decreasing in respect to ȳ. Therefore the function BF10 is strictly monotonically

increasing in respect to |ȳ|.

Proposition 2 For n ∈ [1,∞), σ > 0, σ1 > 0 :

1. If σ1 > ȳ the function BF10 decreases strictly monotonically with respect

to alternative prior width σ1.

2. If σ1 <
√

ȳ2 − σ2 the function BF10 increases strictly monotonically with

respect to the alternative prior width σ1.

3. As the alternative prior width σ1 approaches its limits the following holds:

lim
σ1→0

BF10 = 1 and lim
σ1→∞

BF10 = 0.

Proof. Let n ∈ (0,∞), σ > 0, σ1 > 0. With Lemma 3 strictly increasing mono-

tonicity for all positive σ1 is proven by taking the partial derivative ∂BF10

∂σ1
and
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look, if it is strictly positive for all σ1 for any other fixed parameter. The

logarithmic function property of Lemma 2 for preserving the order and the

composition of the logarithmic function ln with the Bayes Factor function BF10

from Proposition 1 will be used.

Therefore the conditions for ∂ ln(BF10)
∂σ1

> 0 or ∂ ln(BF10)
∂σ1

< 0 will be proven:

∂ ln(BF10)

∂σ1
=

2n2σ1ȳ
2

2σ2(σ2 + nσ2
1)
− (4nσ2σ1)n

2σ2
1 ȳ

2

(2σ2(σ2 + nσ2
1))

2
− nσ1

σ2 + nσ2
1

=
n2σ1ȳ

2

σ2(σ2 + nσ2
1)
− n3σ3

1 ȳ
2

σ2(σ2 + nσ2
1)

2
− nσ1

σ2 + nσ2
1

=
n2σ1ȳ

2(σ2 + nσ2
1)

σ2(σ2 + nσ2
1)

2
− n3σ3

1 ȳ
2

σ2(σ2 + nσ2
1)

2
− nσ2σ1(σ

2 + nσ2
1)

σ2(σ2 + nσ2
1)

2

=
n2σ2σ1ȳ

2 + n3σ3
1 ȳ

2

σ2(σ2 + nσ2
1)

2
− n3σ3

1 ȳ
2

σ2(σ2 + nσ2
1)

2
− nσ4σ1 + n2σ2σ3

1

σ2(σ2 + nσ2
1)

2

=
n2σ2σ1ȳ

2 − nσ4σ1 − n2σ2σ3
1

σ2(σ2 + nσ2
1)

2

=
n2σ1ȳ

2 − nσ2σ1 − n2σ3
1

(σ2 + nσ2
1)

2

= nσ1 ·
(
nȳ2 − σ2 − nσ2

1

(σ2 + nσ2
1)

2

)
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There are two cases relevant for the monotonicity for the whole function BF10:

1. Case: σ1 > ȳ

σ1 > ȳ ≥
√
ȳ2 − σ2

n

σ2
1 > ȳ2 − σ2

n

0 > ȳ2 − σ2

n
− σ2

1

0 > nȳ2 − σ2 − nσ2
1

0 >
nȳ2 − σ2 − nσ2

1

σ2(σ2 + nσ2
1)

2

0 > nσ1 ·
(
nȳ2 − σ2 − nσ2

1

σ2(σ2 + nσ2
1)

2

)
0 >

∂ ln(BF10)

∂σ1

Note, if σ1 > ȳ yields, in respect to the alternative prior width the whole

function is monotonically decreasing, even for large n, especially for

σ1 > lim
n→∞

√
ȳ2 − σ2

n
=
√
ȳ2 − 0 = ȳ
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2. Case: σ1 <
√
ȳ2 − σ2

σ1 <
√

ȳ2 − σ2 ≤
√
ȳ2 − σ2

n

σ2
1 < ȳ2 − σ2

n

0 < ȳ2 − σ2

n
− σ2

1

0 < nȳ2 − σ2 − nσ2
1

0 <
nȳ2 − σ2 − nσ2

1

σ2(σ2 + nσ2
1)

2

0 < nσ1 ·
(
nȳ2 − σ2 − nσ2

1

σ2(σ2 + nσ2
1)

2

)
0 <

∂ ln(BF10)

∂σ1

Note, if σ1 <
√
ȳ2 − σ2 yields, in respect to the alternative prior width

the whole function is monotonically decreasing, even for small n. Since

there is an especial interest in n ≥ 1, this yields for

σ1 < lim
n→1

√
ȳ2 − σ2

n
=
√
ȳ2 − σ2

Therefore it is proven, that given σ1 > ȳ, the function BF10 (Lemma 2)

in respect to σ1 is strictly monotonically decreasing. However, as long

as σ1 <
√
ȳ2 − σ

n holds, the function BF10 in respect to σ1 is strictly

monotonically increasing.
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3. Proof for limσ1→0 BF10 = 1 and limσ1→∞ BF10 = 0 :

lim
σ1→0

BF10 = lim
σ1→0

σ√
σ2 + nσ2

1

· exp
[

n2ȳ2σ2
1

2σ2(σ2 + nσ2
1)

]
=

σ√
σ2 + 0

· lim
σ1→0

exp

[
n2ȳ2σ2

1

2σ2(σ2 + nσ2
1)

]
= 1 · exp

[
n2ȳ2 · 0

2σ2(σ2 + 0)

]
= 1 · exp [0]

= 1

lim
σ1→∞

BF10 = lim
σ1→∞

σ√
σ2 + nσ2

1

· exp
[

n2ȳ2σ2
1

2σ2(σ2 + nσ2
1)

]

= lim
σ1→∞

σ1
σ
σ1

σ1

√
σ2

σ2
1
+ n
· exp

[
σ2
1n

2ȳ2

σ2
12σ

2(σ
2

σ2
1
+ n)

]

= lim
σ1→∞

σ
σ1√

σ2

σ2
1
+ n
· exp

[
n2ȳ2

2σ2(σ
2

σ2
1
+ n)

]

=
0√
0 + n

· exp
[
n2ȳ

2σ2n

]
= 0 · exp

[
nȳ2

2σ2

]
= 0

Proposition 3 Given a critical Bayes Factor threshold BFcrit for any ȳ, σ >

0, σ1 > 0 and a tolerance ε Algorithm 3 will always find all correct solutions

beyond that tolerance ε for BF10(ȳ, σ, σ1) = BFcrit of which there are at most

two: n1 and n2, if any solutions exist.

Proof. For BFcrit ∈ (0, 1), σ > 0, σ1 > 0, ε > 0 the proposed algorithm calcu-

lates the correct result by using Newtons Method after Lemma 4. Following

functions are used in the algorithm:
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Input: n, ȳ, σ, σ1

Output: n∗

n∗ ← σ2 ·
(

σ2
1−2ȳ2+

√
4ȳ4+σ4

1

2ȳ2σ2
1

)
return n∗

Function argMinBF10(n, ȳ, σ, σ1)

Input: n, ȳ, σ, σ1

Output: BF10

BF10← σ√
σ2+nσ2

1

· exp
[

n2ȳ2σ2
1

2σ2(σ2+nσ2
1)

]
return BF10

Function BF10(n, ȳ, σ, σ1)

Input: n, ȳ, σ, σ1

Output: ∂BF10

∂n (n, ȳ, σ, σ1)

derBF10← σ2
1

(
−σ4−nσ2σ2

1+2nσ2ȳ2+n2σ2
1 ȳ

2

2σ(σ2+nσ2
1)

5/2

)
· exp

[
n2σ2

1 ȳ
2

2σ2(σ2+nσ2
1)

]
return derBF10

Function derBF10(n, ȳ, σ, σ1)

Input: ni, ȳ, σ, σ1

Output: ni+1

ni+1 ← ni − BF10(ni,ȳ,σ,σ1)
derBF10(ni,ȳ,σ,σ1)

return ni+1

Function newtonsMethod(ni, ȳ, σ, σ1)

The function argMinBF10 is implemented directly from the argminn BF10 in

Proposition 1. The function BF10 follows directly from Definition 1, the func-

tion derBF10 is the implementation of the derivative of BF10. Its correctness

is proven in the proof of Proposition 1. Finally the function newtonsMethod is

implemented after Newtons Method, specified in Lemma 4. Note, that only the

iterative process of Newtons Method is implemented in this function.

There are three cases to be proven in regards of correctness of the algorithm:

Case 1 : ȳ = 0

For ȳ = 0 there exists no minimum in BF10. Therefore there is either no

intersection point with BFcrit = BF10 or there is exactly one. However

for large n:
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lim
n→∞

BF10(ȳ = 0, n, σ, σ1) = lim
n→∞

(
σ√

σ2 + nσ2
1

· exp
[

0

2σ2(σ2 + nσ2
1)

])

= lim
n→∞

√
n σ√

n

√
n
√

σ2

n + σ2
1

=
0√

0 + σ2
1

= 0

It is easy to see, that for ȳ = 0 the function BF10 is strictly monotonic

decreasing in respect to n as the exponential term falls away.

If BF10 < BFcrit at n = ε there is no intersection point. Otherwise there

is an intersection point, that can be found by using Newtons Method (see

Lemma 4) with initial point n∗ = ε.

Case 2 : ȳ ̸= 0 and BFcrit = minBF10

If ȳ ̸= 0, a minimum exists at (n∗, BF10(n∗)). Because BFcrit = BF10(n∗),

there exists only one intersection point at (n∗, BF10(n∗)). Therefore the

chosen initial point n∗ is the solution.

Case 3 : ȳ ̸= 0 and BFcrit ̸= minBF10

If ȳ ̸= 0, a minimum exists at (n∗, BF10(n∗)). Either minBF10(n∗) >

BFcrit, then there is no intersection point as the critical threshold is lower

than the minimum of BF10, or minBF10(n∗) < BFcrit, then there exist

two intersection points n1 and n2. These points can be found by using

Newtons method if they are adjusted by ε, such that n1 = n∗ − ε and

n2 = n∗ + ε. Therefore the assumption ∂BF10

∂n (n1) ̸= 0 ̸= ∂BF10

∂n (n2) holds

and Newtons Method can be applied (after Lemma 4) iteratively for n1

and n2 to find the correct solutions.

Note that especially for the cases in which the minimum exists: the initial n1/2

are always chosen with n1 = n∗− ε and n2 = n∗ + ε of the argminn BF10 = n∗.

If ε is continuously decreasing all solutions can be found accordingly to the

algorithm. Therefore the algorithm calculates the correct solutions for BF10 =

BFcrit in respect to n1/2, if any solution exists.
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3.2 Optional Stopping Simulation

The Optional Stopping simulation is divided into three parts: Firstly, the Op-

tional Stopping results based on the idealised setting for the asymmetrical and

the symmetrical stopping case the are reported in Section 3.2.1. Secondly, an

approximation for the asymmetrical and symmetrical case in the idealised set-

ting will be derived in Section 3.2.2. Finally, the Optional Stopping results

based on the realistic setting for the symmetrical stopping case are reported in

Section 3.2.3.

3.2.1 Normal Prior With Known Variance (Idealised Setting)

The Asymmetrical Optional Stopping Procedure stops when a calculated Bayes

Factor based on the collected data is smaller than the critical Bayes Factor

decision threshold for H0.

The results for the asymmetrical Optional Stopping simulation with all 20000

repetitions are shown in Figure 11.

The decision probability P (′H ′
0) was calculated by taking the decision count

of Count(′H ′
0) and dividing it by the sum of the decision count of Count(′H ′

0)

and Count(′H ′
1 or indecisive), such that P (′H ′

0) =
Count(′H′

0)
Count(′H′

0)+Count(′H′
1 or indecisive)

.

For the decision probability of the null hypothesis P (′H ′
0) > 0.5 the true mean

interval is µ = [0, 0.37].

Asymmetrical Optional Stopping decisions for H0 are extremely likely for small

effect sizes and get more unlikely for increasing true means until it is extremely

unlikely to decide for H0. Deciding for H0 with a small effect is not surprising,

because the Asymmetrical Optional Stopping Procedure can be directly com-

pared to the asymmetric Optional Stopping procedure in significance testing.
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Simulation with 20000 repetitions for µ = 0.1
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Figure 11: Decision Counts for H0 and H1 or indecisive decisions for each Stop
Count. Decisions were made for all 20000 repetitions under the assumption of
the Asymmetrical Optional Stopping Rule (See Algorithm 1). Note, decisions
H1 or indecisive were made after n = 250 data points.

On the other side for the symmetrical Optional Stopping simulation the results

are rather surprising. Even though it is a symmetrical Optional Stopping proce-

dure and therefore decides for H0 or H1 given the calculated Bayes Factors there

is more than 80% probability to decide for the H0 for small effects µ = [0, 0.2].

For higher true means µ the decision probability for H0 decreases.

The results for the symmetrical Optional Stopping simulation are shown in

Figure 12.

Decision probability for H0 was calculated here analogously to the asymmetric

Optional Stopping simulation by taking the decision count of H0 and divid-
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ing it by the sum of the decision count of H0 and H1, such that P (′H ′
0) =

count(H0)
Count(H0)+Count(H1)

.

For the decision probability of the null hypothesis P (′H ′
0) > 0.5 the true mean

interval is µ = [0, 0.35].
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Figure 12: Decision Counts for H0 or H1 for each stop count. Decisions were
made for all 20000 repetitions under the assumption of the symmetrical Optional
Stopping procedure. On the right bottom a decision probability curve for H0

over all µ = [0, 1] is shown.

Symmetrical and asymmetrical decision probabilities are compared to each other

in Figure 13. The difference between asymmetrical and symmetrical is calcu-

lated as P (′H ′
0 | µ,diff) = P (′H ′

0 | µ, asymmetric)−P (′H ′
0 | µ, symmetric). The

difference is the greatest for small true means µ, although it is noteworthy that
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for symmetrical Optional Stopping a lower probability for H0 was expected and

therefore the curves of the two Optional Stopping procedures fit together better

than expected.
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Figure 13: Asymmetrical Optional Stopping leads to a higher bias towards H0

for smaller true effect sizes µ. However, the difference decreases with increasing
µ.

3.2.2 Analytical Approximation for Normal Prior With Known Vari-

ance (Idealised Setting)

It would be interesting, if the Optional Stopping process with its decision prob-

ability for H0 can be approximated. To define an approximation for Optional

Stopping, another perspective on decision thresholds can be taken. Until now, in
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Optional Stopping simulations decisions for H0 or H1 were made by specifying

a Bayes Factor threshold BFcrit and sampling from a normal distribution with

a given true mean µ and a fixed true standard deviation σ and fixed alternative

prior width σ1, such that σ = 1 = σ1. One can change the perspective by using

the inverse of the Bayes Factor formula BF−1
10 = BFcrit specified in Definition

2 to obtain the decision threshold ±ȳcrit for H0.

These calculated values are critical mean thresholds ȳcrit, so a decision can

be made with the Optional Stopping procedure for a certain estimated mean ȳ

with a given Bayes Factor threshold BFcrit instead of a calculated Bayes Factor.

For the asymmetrical case it is assumed that Y ∼ N (µ, σ = 1), therefore we

assume ȳ(n) ∼ N (0, 1√
n
). This visualization for fixed µ = 0.1 can be seen in 14.

The decision probability is given by the sum of the probabilities to stop at each

step k and decide for H0:

P (′H ′
0|stopping rule r) =

∞∑
k=1

P (′H ′
0, Nstop = k)

Note, that the asymmetric stopping rule always decides for H0 when it stops,

therefore P (′H ′
0, Nstop = k) = P (Nstop = k). However P (′H ′

0, Nstop = k) is

hard to derive since having not stopped before k non-trivially influences how

the data is distributed at step k.

Therefore a look is taken at the following approximation, which neglects this

dependency and assumes data at step k is distributed as it would have been for

a fixed sample size:

P̃ (′H ′
0 | Nstop = k) := P (′H ′

0 | N = k) ·
k−1∏
i=1

1− P (′H ′
0 | N = i)

Note that it is still necessary to ensure that in all steps before k it was not

stopped by using the same approximation. This can also be defined recursively:
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P̃ (′H ′
0 | Nstop = k) =P (′H ′

0 | N = k)

·
k−1∏
i=1

1− P (′H ′
0 | N = i)︸ ︷︷ ︸

P (‘H1 or indecisive′|N≤k−1)

P (‘H1 or indecisive′ | N ≤ k − 1) =P (‘H1 or indecisive′ | N = k − 1)

·
k−2∏
i=1

1− P (′H ′
0 | N = i)︸ ︷︷ ︸

P (‘H1 or indecisive′|N≤k−2)

Here P (′H ′
0, N = n) can be calculated via the cumulative density function Φ,

because the distribution of ȳ(n) as well as the critical values ±ȳcrit(BFcrit, n, σ1)

are known:

P (H0 | N = n) =

∫ ȳcrit(BFcrit,n,σ1)

−ȳcrit(BFcrit,n,σ1)

1

σ
√
2π

exp

[
−1

2

(
x− µ

σ

)2
]
∂x

=
1

σ
√
2π

∫ ȳcrit(BFcrit,n,σ1)

−ȳcrit(BFcrit,n,σ1)

exp

[
−1

2

(
x− µ

σ

)2
]
∂x

=

√
n√
2π

∫ ȳcrit(BFcrit,n,σ1)

−ȳcrit(BFcrit,n,σ1)

exp

[
−1

2

(√
n(x− µ)

)2]
∂x

=

√
n√
2π

∫ ȳcrit(BFcrit,n,σ1)

−ȳcrit(BFcrit,n,σ1)

exp
[
−n

2
(x− µ)2

]
∂x

=

√
n√
2π

(∫ ȳcrit(BFcrit,n,σ1)

−∞
exp

[
−n

2
(x− µ)2

]
∂x

−
∫ −ȳcrit(BFcrit,n,σ1)

−∞
exp

[
−n

2
(x− µ)2

]
∂x

)
= Φµ,σ= 1√

n
(ȳcrit(BFcrit, n, σ1))

− Φµ,σ= 1√
n
(−ȳcrit(BFcrit, n, σ1))

This approximation for P (′H ′
0, Nstop = k) also leads to the following approxi-

mation for the decision probability:
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P̃ (′H ′
0 | stopping rule r) =

∞∑
k=1

P̃ (′H ′
0, Nstop = k)

=

∞∑
k=1

[
P (′H ′

0 | N = k) ·
k−1∏
i=1

[1− P (′H ′
0 | N = i)]

]

=

∞∑
k=1

[
Φµ,σ= 1√

k
(ȳcrit(BFcrit, k, σ1))

− Φµ,σ= 1√
k
(−ȳcrit(BFcrit, k, σ1))

·
k−1∏
i=1

[
1−
(
Φµ,σ= 1√

i
(ȳcrit(BFcrit, i, σ1))

− Φµ,σ= 1√
i
(−ȳcrit(BFcrit, i, σ1))

)]]
The results for the approximation in comparison to the Optional Stopping sim-

ulation are shown in Figure 15.

The approximation for the asymmetrical Optional Stopping simulation is not

great as it does not look like a lower or upper bound of the simulation. Instead

it is at P (′H ′
0) = 1 for µ = [0, 0.5] and decreases only afterwards with a big

distance to the simulation. For the decision probability of the null hypothesis

P (′H ′
0) > 0.5 the true mean interval is µ = [0, 0.64]. Therefore it is not a very

good approximation and will not be considered.
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Figure 15: The probability P (′H ′
0) to decide for H0 via critical mean thresholds

±ȳcrit for all true means µ = [0, 1] with step size δ = 0.01 in the Optional
Stopping simulation and its approximation.

The deduction of the approximation for the symmetrical Optional Stopping

simulation is analogous to the asymmetrical case in addition to the density

calculation for the alternative hypothesis H1. For more details, see Appendix

A.2.

The results for the approximation in comparison to the Optional Stopping sim-

ulation in the symmetrical case are shown in Figure 16. The approximation fits

the shape of the simulation. It predicts at all times smaller probabilities for a

H0 decision than the simulation decides for. For the decision probability of the

approximation with respect to the null hypothesis P (′H ′
0) > 0.5 the true mean
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interval is µ = [0, 0.26].
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Figure 16: The results for critical means ȳcrit with the probability P (′H ′
0) to

decide for null hypothesis H0 for all µ = [0, 1] for both, the simulation and
approximation.

There is a certain trade-off in Figure 16 between the densities of the decision

boundaries for H0 and H1, which leads to an overestimation of the decisions for

H1 in the beginning of the Optional Stopping process. This is the case, because

until the density at the sample size k of the critical mean boundaries for H0 can

be estimated the probability for a decision for H0 is P (′H ′
0 | n < k) = 0

To improve the approximation a search for the optimal starting count of gath-

ered data points for the Optional Stopping process nstart is conducted. The

search space is set in the interval nstart = [1, 15] — as the decision boundary of

54



H0 is starting at nstart = 8 — because it is unlikely that the density of the deci-

sion boundary ofH0 is less than the empirical simulation and instead the density

of the decision boundary of H0 is overestimated. The Optional Stopping simu-

lation and the approximation were again conducted with these changed starting

values and compared with the corresponding starting values nstart. The results

can be seen in Figure 17a.

The optimal nstart has been chosen by the smallest positive difference for P (′H ′
0 |

µ, symmetric simulation) - P (′H ′
0 | µ, symmetric approximation) for each fixed

nstart. The best fit for the approximation is nstart = 6 and is visualized in Figure

17b. For the decision probability of the approximation with respect to the null

hypothesis P (′H ′
0) > 0.5 the true mean interval is µ = [0, 0.32].
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(b) The decision probability for H0 given
µ with nstart = 6 for the approximation
compared to the simulation - both in the
symmetrical case.

3.2.3 Cauchy-Prior With Unknown Variance (Realistic Setting)

For the realistic setting only the symmetrical Optional Stopping procedure was

simulated. The main difference is the unknown variance in the cauchy prior.

The results of the Optional Stopping simulation are visualised in Figure 18.

It is surprising that the symmetrical Optional Stopping procedure yield very

similar results in the realistic setting compared to the idealised setting. Again,

for small effect sizes µ = [0, 0.2] almost 70% of the decisions are made in favor

of the null hypothesis H0. For higher effects this behaviour again decreases.
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For the decision probability of the null hypothesis P (′H ′
0) > 0.5 the true mean

interval is µ = [0, 0.32].

Note, that decisions for H0 start at sample size n = 8. This seems to be likely

due to the chosen scale r, because in the simulations for lower r-scales the needed

sample size to decide for H0 increases. For r = 0.5√
2
the required sample size is

n = 32. For r = 2√
2
the required sample size is n = 2.
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Figure 18: Decision Counts for H0 or H1 for each stop count. Decisions were
made for all 20000 repetitions under the assumption of the symmetrical Optional
Stopping procedure. On the right bottom a decision probability curve for H0

over all µ = [0, 1] is shown.

A summary of the different combinations of scale r, true effect sizes µ and

Bayes Factor decision thresholds BFcrit can be seen in Figure 19. Across the

56



three plots for increasing BFcrit the probability to decide for the null hypothesis

H0 decreases. Also, with an increase in scale r the decision probability for H0

increases as well.
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Figure 19: Symmetrical Simulation with Cauchy Prior for different r and BFcrit

in a true mean interval of µ = [0, 1] with a step size of δ = 0.01. Left top:
BFcrit = 3, right top: BFcrit = 6 and bottom: BFcrit = 10.
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3.3 Application Example: How to hack Bayes Factors?

Change the parameters!

Assume the idealised setting, but one can assume a true effect of µ = 0.1 and

a true variance of σ2 = 1. The goal is to use the Catch Up Effect properties in

this setting for an Optional Stopping simulation to

1. Maximize the probability of the null hypothesis P (′H ′
0)

2. Maximize the probability of the alternative hypothesis P (′H ′
1)

There are several parameters that one can adjust: variance σ2, alternative prior

width σ1, the Bayes Factor decision threshold BFcrit and Optional Stopping

sample size minimum nstart and Optional Stopping sample size maximum nend.

Maximize the decision probability of the null hypothesis P (′H ′
0)

• Choose a ”noisy” σ2 > 1. This is possible if noise is deliberately introduced

e.g. in experimental setups. Assume that noise is introduced to get to a

variance of σ2 = 4.

• Choose σ1 for µ < σ1. Because µ is estimated or known it is easy to choose

a σ1 that is greater than µ. However, if σ1 increases, the probability to

decide for H0 increases as well, so it is wise to choose a higher σ1. It

is also known in literature, that a chosen alternative prior width, that is

too vague, is misspecified for sure, so σ1 is chosen at the higher bound of

recommendation, σ1 = 3 (see Tendeiro and Kiers (2019), p. 779f.).

• Choose a low Bayes Factor threshold BFcrit to increase the chance the

Catch Up Effect occurs. The lowest reasonable Bayes Factor decision

threshold to choose is typically BFcrit = 3.

• Calculate nstart and nend based on 1/BFcrit = 1/3. For this the proposed

algorithm to find intersection points between Bayes Factor thresholds and

BF10 is used (Algorithm 3). Therefore nstart = ⌈3.56⌉ = 4 and nend =

⌊2589.72⌋ = 2590. It is known, that it may be likely between the interval

n = [4, 2590] to decide for H0. Therefore it is wise to decide for nstart = 4

as start sample size to start Symmetrical Optional Stopping with and

nend = 2590 as stopping sample size — if no decision has been made until

then.
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The resulting probability for the null hypothesis is P (′H ′
0) = 0.821. The results

can be seen in Figure 20.
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Figure 20: σ2
1 = 3 and σ = 2. On the left is the BF01 function. On the right

is a Symmetrical Optional Stopping simulation with nstart = 4 and a stopping
condition for nend = 2590. Note that in the simulation Stop Count n = 0 equals
nstart = 4.

Maximize the decision probability of the alternative hypothesis P (′H ′
1)

• Minimize σ2 as much as possible. Lets say it is possible to minimize noise

as much as possible, so the resulting variance is σ2 = 1.

• Choose σ1 close to µ, such that σ1 slightly greater than µ. Because µ is

known set σ1 = 0.15.

• Choose a high Bayes Factor threshold BFcrit to decrease the chance the

Catch Up Effect occurs. The Bayes Factor threshold, however, is set to

BFcrit = 3.

• Calculate nstart and nend based on 1/BFcrit = 1/6. For this the proposed

algorithm to find intersection points between Bayes Factor thresholds and

BF10 is used (Algorithm 3). Therefore nstart = {} and nend = {} and no

start sample or stopping sample size is set.

Probability for the null hypothesis is P (′H ′
0 | BFcrit = 3) = 0.916. For a given

BFcrit = 6 it is even higher P (′H ′
0 | BFcrit = 6) = 0.999. The results can be

seen in Figure 21.
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Figure 21: σ1 = 0.15 and σ = 1. On the left is the BF01 function. On the
right side is the histogram for a symmetrical Optional Stopping simulation with
nstart = 1 and no nend.
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4 Discussion

The aim of this exploratory bachelor thesis is to determine if Bayesian Optional

Stopping is really unproblematic as it is claimed by Rouder (2014). This was

done by looking at the Bayes Factors in an idealised setting (point vs. normal

prior, see Tendeiro and Kiers (2019)) and in a more realistic setting (point vs.

Cauchy prior). For the former the Bayes Factor function BF10 and its properties

— especially for the non monotonic behaviour of BF10, the Catch Up Effect —

was investigated and Optional Stopping Simulations for the asymmetric and

the symmetric Optional Stopping procedure conducted. The Catch Up Effect

in the realistic setting was investigated by conducting an Optional Stopping

simulation for the symmetric Optional Stopping procedure.

The Catch Up Effect analyis of the idealised setting for BF10 shows, that there

always exist exactly one minimum (if ȳ ̸= 0) , whose value is not influenced by

σ2, but whose location scales with it. If for BF10 the amount of the mean |ȳ|
increases then BF10 increases. If for BF10 the alternative prior width σ1 with

σ1 > ȳ increases, then BF10 decreases and converges for very large σ1 to 0. If

σ1 with σ1 <
√
ȳ2 − σ2 decreases, than BF10 decreases as well, although for

very small σ1 it converges to 1. For a given Bayes Factor decision threshold it

is also possible to calculate a start sample size nstart and a sample size nend for

Optional Stopping to influence the decision probabilities.

It is not surprising that the minimum location scales with known variance σ2.

The greater the noise and true variance are, the greater the sample size has

to be to make a decision. Similar to this, it is also not surprising, that σ2 is

independent to the minimum value. The independence of the minimum value of

the effect is not surprising either. It is comprehensive, that Bayes Factors and

the minimum of the Catch Up Effect do not depend on the known variance of

the data, but only on the observed mean, prior width variance and sample size.

The increase of BF10 with the increased amount of observed mean ȳ is a direct

consequence of the central limit theorem: while the sample size increases towards

infinity, the Bayes Factors converges towards the alternative decision. This is

a crucial property of hypothesis tests for researchers to make reliable decisions

for the alternative hypothesis if a true effect is existent.

The analysis shows the alternative prior width σ has a more unintuitive inter-

pretation: If σ1 <
√
ȳ2 − σ2 then BF10 decreases as the alternative prior width

decreases. However, in practice this is in itself a very small alternative prior

width. As this width decreases towards 0, the Bayes Factor converges towards
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1. Therefore, if such a small alternative prior width is chosen, the density of the

normal prior converges to the density of the point prior. Bayes Factors can not

differentiate between the null or alternative hypothesis.

If σ1 > ȳ then BF10 decreases as σ1 increases. This behaviour was also reported

by Tendeiro and Kiers (2019). If a higher standard prior width is specified, it is

more likely to decide for the null hypothesis. However, if someone specifies the

standard prior width smaller than the Catch Up Effect decreases and a more

likely decision for the alternative hypothesis is made. This means that one can

misspecify the prior so small, that a decision towards the alternative hypothesis

can be influenced.

Start sample size nstart and end sample size nend for a given Bayes Factor

threshold BFcrit can be calculated by Newtons Method. Intuitively the most

likely start sample size nstart and end sample size nend influences the decision

for the null hypothesis with the corresponding decision threshold BFcrit.

The Optional Stopping simulation in the idealised setting uncovered, that there

is a high bias for decision towardsH0 for small to medium sized effects (P (′H ′
0) ≥

0.8 for µ = [0, 0.2]). However, this is also the case for the Optional Stopping

simulation conducted for the realistic setting, although with a lesser decision

probability for H0 (P (′H ′
0) ≥ 0.7 for µ = [0, 0.2]).

There are many parameters to adjust for increasing the decision probability

for the null hypothesis - the Optional Stopping simulations only show the ad-

justments for a true mean µ with a fixed alternative prior width σ1 = 1. The

results clearly show, that there is a big overestimation for the null hypothesis

- especially for small effect sizes. This overestimation was reported by Rouder

et al. (2009) ”[if σ1] is set unrealistically high”, but the setting of σ1 = 1 is seen

as ”reasonable”(Rouder et al., 2009, p.230). The Catch Up Effect of the null

hypothesis seemingly was not known and underestimated by researchers, which

lead to an overconfidence in default priors. It is surprising that not only the

trivial, asymmetrical Optional Stopping procedure shows a clear bias towards

the null hypothesis, but even the symmetrical Optional Stopping with a Cauchy

prior as alternative prior shows a substantial bias for the null.

Just as Tendeiro and Kiers (2019) pointed out, it might also be the case, that

the interpretation of Bayes Factors without contextualising the meaning of their

value or discarding the posterior is problematic for making decisions in Optional

Stopping. Lets say that there is a Bayes Factor of value 3. The common inter-

pretation is that this means it is just three times more likely than the compared

model. But what exactly does this mean? Especially in model specifications
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with an alternative model where default priors (e.g. Cauchy priors) are used in

comparison to the null model (point prior) it is not entirely clear how the inher-

ent belief for a hypothesis inherently correlates to the chosen models (Tendeiro

& Kiers, 2019, p. 782f.). The value of a Bayes Factor is highly dependent on

the chosen within-prior models (Tendeiro & Kiers, 2019, p.778f.).

A Bayesian t-test, that would be able to make reliable decisions in an Optional

Setup framework would be a desirable property. It would be cost-efficient,

because one only needs a sample size that is just big enough to make a decision.

However, as pointed out, the bias in form of the Catch Up Effect between the

effect size and decisions made for the null hypothesis is more impactful than

commonly thought. Researchers need to carefully examine for their assumed,

to be measured, effects. It can then be problematic, if they want to use Optional

Stopping with the Bayesian t-test for their effect size. Especially, if they wrongly

estimate the effect size and the corresponding relevant parameters it is highly

likely to make decisions for the null hypotheses even though an effect exists.

The application example shows, by using the properties of BF10 in the idealised

setting one can change these parameters to maximize the likelihood for a decision

towards the null hypothesis H0 or towards H1.

Therefore there are many ways to influence Bayes Factors with default priors.

It is easy to misspecify parameters like σ2, σ1, BFcrit, etc. in practice, so Bayes

Factors are easy to hack. If the underlying inherent belief is not specified and

the selection of the within-priors is not disclosed, there is no way to distinguish

a reasonable Bayes Factor from a hacked Bayes Factor. The ”objectivity” of

a default prior seems to not align with the Bayesian statistical philosophy in

which one updates their inherent beliefs according to the observed data. If a

researcher does not have a subjective, justified reason to believe in the prior

as a correct model for their hypothesis it is not reasonable to choose. The

consideration for default priors just because of the ”appearance of objectivity

instead of true objectivity” (Tendeiro & Kiers, 2019, p.781) lead to problematic

interpretations of the resulting Bayes Factors.

Furthermore, a reliable interpretation of the choice of the Cauchy scale r and

the alternative prior width σ1 is needed, if default priors are used for the rep-

resentation of a justified beliefs. Researchers should get an intuition for which

different r or σ1 are justified and when it is even helpful to rely on a default

prior.

As de Heide and Grünwald (2021) already concluded, Bayesian Optional Stop-

ping can be used for subjective priors that justify the beliefs of the researcher
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about the data. Default priors should only be used if there is a reasonable belief.

They are unfit to detect small true effects in the current implementation of the

Bayesian t-test. Additionally it is advised to take a sufficiently large start sam-

ple size and to not stop at a specific end sample size. However, even if one does

account for this and misspecifies the prior, then small true effects still require a

very large sample size, not accounting for noise and variance.

The main focus of this thesis was on the idealised setting, which incorporated the

normal prior as alternative prior. Even though an Optional Stopping simulation

on the Cauchy prior was already conducted it is still unclear if properties of the

Catch Up Effect observed in the point vs. normal prior Bayes Factor occurs in

the point vs. Cauchy prior Bayes Factor and how they relate if the variance

is unknown. Also the relation between the Catch Up Effect and the Optional

Stopping simulation should be further investigated. The different influences of

the Catch Up Effect and Optional Stopping are clear, but how they relate to

each other and which parameters are more dominant over each other is still

needs to be answered.

Default priors should not be used without a justified belief. The parameter

choice and their reasons should be disclosed. Optional Stopping with the Catch

Up Effect shows that Bayes Factors can be hacked for default priors to influence

a decision towards either hypothesis. The promise of NHBT that Optional

Stopping is possible requires qualification: There is no free lunch and, when done

incorrectly, incorrect interpretations can come from using Optional Stopping.
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A Appendix

A.1 Generalizing ȳcrit for BF10 = BFcrit

BF10 = BFcrit

exp

[
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2
crit
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After substituting BFcrit = 1 one can retrieve the corresponding formula of

Tendeiro and Kiers, 2019:

ȳcrit = ±
√
2(1 + nσ2

1)

nσ1

(
ln

(√
1 + nσ2

1

))1/2

(11)
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A.2 Symmetrical Optional Stopping Approximation
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Figure A1: Symmetrical Optional Stopping: An approximation on critical
means ȳcrit with the visualization of the deduction. The 95% Confidence In-
terval of the normal distribution around µ covers some area of the Decision
Boundaries of H0 and H1. For increasing n the interval narrows down.

Assume data y ∼ N (µ, σ = 1), therefore it is assumed ȳ(n) ∼ N (0, 1√
n
). The

decision probability is given by the sum of the probabilities to stop at each step

k and decide for H0 or H1:

P (′H0 or H ′
1|stopping rule r) =

∞∑
k=1

P (′H0 or H ′
1, Nstop = k)
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Now, for the symmetric stopping rule, for each stop a decision is made either

for H0 or H1. Therefore

P (′H0 or H ′
1, Nstop = k) = P (′H ′

0, Nstop = k) + P (′H ′
1, Nstop)

= P (Nstop = k)

Looking at the following approximation as P (′H0 or H ′
1, Nstop = k) is hard to

derive since having not stopped before k non-trivially influences how the data

is distributed at step k, that neglects this dependency and assumes data at step

k is distributed as it would have been for a fixed sample size.

P̃ (′H ′
0 | Nstop = k) := P (′H ′

0 | N = k) ·
k−1∏
i=1

1− P (′H0 or H ′
1 | N = i)

P̃ (′H ′
1 | Nstop = k) := P (′H ′

1 | N = k) ·
k−1∏
i=1

1− P (′H0 or H ′
1 | N = i)

Similar to the symmetric case we can calculate P (′H ′
0, N = n) and P (′H ′

1, N =

n) via the cumulative densitiy function Φ, because we know the distribution of

ỹ(n) as well as the critical values ±ycrit(BFcrit1 , n, σ1) and ±ycrit(BFcrit2 , n, σ1):

P (′H ′
0 | N = n) = Φµ,σ= 1√

n
(ȳcrit(BFcrit1 , n, σ1))

− Φµ,σ= 1√
n
(−ȳcrit(BFcrit1 , n, σ1))

P (′H ′
1 | N = n) = Φµ,σ= 1√

n
(ȳcrit(BFcrit2 , n, σ1))

− Φµ,σ= 1√
n
(−ȳcrit(BFcrit2 , n, σ1))

These approximations for P (′H ′
0, Nstop = k) lead to the following approximation

for the decision probability:
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P̃ (′H ′
0 | stopping rule r) =

∞∑
k=1

P̃ (′H ′
0, Nstop = k)

=

∞∑
k=1

[
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·
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1−
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i
(ȳcrit(BFcrit1 , i, σ1))
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i
(−ȳcrit(BFcrit1 , i, σ1))

)
−
(
1− Φµ,σ= 1√

i
(ȳcrit(BFcrit2 , i, σ1))
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i
(−ȳcrit(BFcrit2 , i, σ1))

)]]
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